Pretraining prevents spatial learning impairment after saturation of hippocampal long-term potentiation.
نویسندگان
چکیده
Spatial learning is impaired by NMDA receptor antagonists at doses that block hippocampal long-term potentiation (LTP). The deficit is not observed in animals that have received spatial or nonspatial pretraining in a different water maze. To determine whether this conditional impairment reflects debilitating sensorimotor effects of NMDA receptor antagonists in na¿ve animals, we compared spatial learning in na¿ve and pretrained animals in which induction of LTP was blocked by a saturation procedure with no obvious effects on sensorimotor functions. Rats with unilateral hippocampal lesions were implanted with multiple bipolar stimulation electrodes in the angular bundle and a recording electrode in the dentate gyrus of the intact hemisphere. Half of the rats were pretrained to find a hidden platform in a water maze. A week later, pretrained and na¿ve rats received either high-frequency (HF) or low-frequency (LF) stimulation at 2 hr intervals, until no further LTP could be induced. The stimulation did not interefere with performance on a balance task or a visual platform task. After stimulation, all rats were trained in a second water maze. Whereas na¿ve HF animals were impaired, pretrained HF animals acquired the new task rapidly and searched as extensively around the platform as LF control animals. These results suggest that pretraining prevents disruption of spatial learning after saturation of LTP in the absence of sensorimotor impairment, that hippocampal LTP might not be crucial for spatial representation per se, and that LTP may be involved only when spatial and contextual or procedural learning take place simultaneously.
منابع مشابه
Impaired spatial learning after saturation of long-term potentiation.
If information is stored as activity-driven increases in synaptic weights in the hippocampal formation, saturation of hippocampal long-term potentiation (LTP) should impair learning. Here, rats in which one hippocampus had been lesioned were implanted with a multielectrode stimulating array across and into the angular bundle afferent to the other hippocampus. Repeated cross-bundle tetanization ...
متن کاملP13: Potassium Channels and Long-Term Potentiation Formation
Long-term potentiation (LTP) is a form of activity-dependent plasticity that occurs during learning. Potassium channels are the most diverse group of all ion channels that related to synaptic plasticity. Small-conductance calcium-activated potassium channels (SKs) are found in hippocampal CA1 neurons and by inhibiting of postsynaptic potentials are involved in synaptic transmission impairment. ...
متن کاملP3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory
Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...
متن کاملProtective effect of α-terpineol against impairment of hippocampal synaptic plasticity and spatial memory following transient cerebral ischemia in rats
Objective(s): Cerebral ischemia is often associated with cognitive impairment. Oxidative stress has a crucial role in the memory deficit following ischemia/reperfusion injury. α-Terpineol is a monoterpenoid with anti-inflammatory and antioxidant effects. This study was carried out to investigate the effect of α-terpineol against memory impairment following cerebral ischemia in rats. Materials a...
متن کاملAssessment of the effect of nitric oxide within hippocampal CA1 area on spatial learning and memory in morphine dependent rats
Introduction: There are evidences showing the role of nitric oxide in the opiate reward properties. The role of nitric oxide signaling pathway as an intracellular mechanism on augmentation of long term potentiation in hippocampal CA1 area of rats is also confirmed. It has been also reported that oral morphine dependence facilitates formation of spatial learning and memory via activation of N...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 19 24 شماره
صفحات -
تاریخ انتشار 1999